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Several high-precision tests of gravitational theories applied to the field of a 
spherical mass particle (the Sun) are formulated and analyzed. These tests 
mainly involve the accurate timing by (on-board) atomic clocks of two-way 
radio signals between two spacecraft (transponders) in various solar orbits. 
Measures of the gravitational field to at least 1 part in 108, or order m/R, 
where m is the Schwarzschild radius of the Sun and R is the astronomical 
unit, arc aimed at, with an assumed round trip time precision of 10 -2/~s 
or 1.5 m distance. Since it is important to distinguish between the radial 
coordinate parameters occurring in the theory of the tests and their common 
astronomical measurements based on classical assumptions, two of the 
tests include the means in principle of determining these coordinate 
parameters. 

1. INTRODUCTION 

The testing of general relativity theory by the three classical tests 
suggested by Einstein (1916) have been fraught with various practical 
difficulties which have limited the degree of its verification. Only two of these 
tests were reasonably successful, the deflection of  light by the Sun and the 
rotation of the perihelion of Mercury. Since Einstein's definitive paper of  1916 
there have been a considerable number of competing theories put forward, 
some of which are not easy to distinguish from general relativity by means of  
the three classical tests. Although general relativity has stood the test of time 
and competition, and there is today immense confidence in the theory, it is 
desirable to push the testing to greater limits of accuracy by all modern 
technological means available. 

The first advance on these lines was the satisfactory verification of the 
gravitational red-shift phenomenon in the field of the Earth by Pound and 
Rebka (1960), and by Pound and Snider (1964), using the M6ssbauer effect 
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in the y-ray emission and resonant absorption by Fe 57 crystals. This gave 
agreement with experiment of all gravitational theories incorporating the 
principle of equivalence, to within 1 ~o of the predicted effect. Radio astronomy, 
by its development of fine angular resolution by long baseline interferometry, 
has enabled the testing of the gravitational deflection of electromagnetic 
waves by the Sun. This involved the monitoring of the position of the radio 
source 3C 279 when occulted by the Sun (Shramek, 1971 ; Hill, 1971), and has 
confirmed the general relativity prediction to within 10~o. Using the precision 
of atomic clocks Shapiro and his co-workers have measured the gravitational 
"time delay" in the transit of a radio signal passing close to the Sun, by radar 
reflection off planets such as Mercury at superior conjunction. This has given 
agreement with general relativity to within 107o (Shapiro et al., 1968; 
1971). 

In this paper tests will be put forward employing technological means of 
even greater precision, namely, the measurement by atomic clocks of the 
transit times of radio signals to and from space probes in various orbits in the 
solar system. The use of this technique was the basis of a test of general 
relativity suggested by the author some years ago (Davidson, 1967). The 
technique has been used in practice in a gravitational time delay test by signals 
sent from Earth to the orbiting spacecraft Mariner VI and Mariner VII 
(Anderson et al., 1971). This verified the general relativity prediction to within 
about 47o. This kind of signaling has been called "active radar" by Thorne 
and Will (1970), where one of the space probes or transponders retransmits 
immediately a radio signal received from the other. Unlike the passive radar 
reflection from planets the active radar technique gives a very precise time of 
retransmission because of the smallness of the space probe, compared with the 
wide (and rough) reflecting surface of a planet as well as its uncertain radius. 
As Thorne and Will have pointed out, the effective time precision by this 
technique is already 0.1 tzs and this can be expected to improve by a factor of 
10 within a few years. This would mean a precision in distance between 
(ideally) stationary transponders of 1.5 m. This is to be compared with the 
present effective timing accuracy of 10/zs or 1500 m in passive radar with 
planets. As far as the atomic clocks specifically are concerned, atomic 
hydrogen maser oscillators have been developed and adapted for space 
flight. These have a stability of 1 part in 101~ over 100 s intervals within 
periods extending to many hours (NASA Press Release No. 76-106, 1976). 

Several of the tests suggested here involve the principle that the space 
probes move on geodesics of the space-time. In these it may be necessary to 
deploy a "drag-free" technique already contemplated by NASA. The probe 
would be contained in vacuo by a shell motivated as necessary by small 
exterior jets so that at all times the probe falls freely in the Sun's 
field. 
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2. PRELIMINARY STEPS 

We assume that all gravitational theories have dynamics derived from 
"potentials" g~j in a Riemannian metric so that the Sun's field has the 
space-time metric described by the expansion, to adequate approximation, 

- - 7 -  - - ~ - ]  dt2 - 1 + dr2 + r2 dO2 + r2 sin2 0 d~ 2 

(2.1) 
where ~, fl, y are constants and m = GM/c 2 is the gravitational radius of the 
Sun, G being the Newtonian gravitational constant, M the Sun's mass and e 
the velocity of light. In general relativity ~ = ~, = 1, fl = 0. In the Brans- 
Dicke theory (Brans and Dicke, 1961) we have ~ = 1, /3 = 1/(oJ + 2), 
y = (aJ + 1)/(o, + 2) where co is the dimensionless constant of the theory. 

All gravitational theories have to yield the Newtonian equation of motion 
as first approximation for slow motion in the Sun's field. In terms of the 
metric this leads to the result 

~GM 
g =  r 2 (2.2) 

where g is the acceleration of a test particle. This equation embodies the 
principle of equivalence and the geodesic principle in the case of general 
relativity. Since we have no other means of  determining the Sun's mass we 
have effectively to take ~ = 1. The resulting term in the coefficient of dt 2 in 
the metric may be regarded as verified at least to 17o by the red-shift 
experiment (for the Earth) already discussed. Henceforth we shall set ~ = 1 
in this paper. 

The test of the rotation of the perihelion of Mercury brings in the constant 
/3 along with y when the formula is derived from the metric (2.1), using the 
geodesic hypothesis for planetary orbits. I f  we ignore the complications raised 
by a possible quadrupole moment of the Sun (which is now regarded with less 
favor), then taking ~, = 1 the general relativity prediction of the precession 
(which then has/3 = 0) has been verified to within 2% by the observations of  
Mercury (Clemence, 1947). However, alternative tests to determine/3 with 
greater accuracy are highly desirable, so fl and y will be the unknown constants 
featuring in the tests of this paper. 

I f  it is possible, as we shall assume henceforth, to plot the "light-time" 
distance between space vehicles to 1.5 m by active radar, then it is clear that 
by arranging for probes to circle Earth and other planets such as Mars it 
should be possible to determine the distance between the center of gravity of  
the Earth and that of Mars to this accuracy during the entire periods of their 
orbits. In this way the "light-time" geometry of the solar system as a whole 
should be known to at least 1 part in 10 l~ accuracy. Consequently we shou!d 
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know to this accuracy when a space vehicle is at rest in the solar system (i.e., 
maintained in this state by the firing of auxiliary jets as necessary). It is 
dearly an advantage in formulating the mathematical analysis for tests of 
gravitational theory if one or more of the vehicles can be regarded as at rest 
within certain toleration limits. Similarly a space probe may be placed in a 
circular orbit round the Sun within certain toleration limits as checked from 
the Earth. These possibilities will be assumed in the subsequent analysis. 

3. DETERMINATION OF V BY A TIME DELAY TEST 
BETWEEN STATIONARY SPACECRAFT 

We imagine two space probes kept at rest on a radius vector from the 
Sun. The outer one A is fixed at r = R of the metric coordinates (2.1), the 
inner one P at coordinate r = p as near as practicable to the Sun. A sends 
radio pulses to P which responds with an immediate return pulse. The time 
of dispatch and receipt of the signal are measured on an atomic clock carried 
by A, to an accuracy more than adequate for the assumed precision limit 
10 -9./~s. Let a pulse leave A at coordinate time tl, arrive at P at coordinate 
time t, and return to A at coordinate time t2. We assume that the pulse moves 
on a radial null line of the metric (2.1). It follows that, neglecting terms 
O(m2/r2), 

1 + ( 1  + y  d r = t -  h = t 2 -  t (3.1) 

and so 

ta-h=2[R-p+(1 + y ) m l o g  R] (3.2) 

The atomic clock at A will register proper time s there and therefore to the 
required order 

Restoring general units this result reads 

2 ( R ~ - -  p) + -c -ff2/~ [ R R R- 0] (3.4) s z - s l  = (1 + y )  l o g ~ -  

where/L = GM. 
The first term is the "Newtonian time" for the two-way trip as if the 

coordinates /~, R were Euclidean. What we have to do is to evaluate the 
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coordinates to, R so that the Newtonian term can be ascertained to sufficient 
accuracy to allow determination of the second term. Methods of  achieving 
this in principle wilt be presented in Sections 4 and 6. The second term in (3.4) 
is the "gravitational time delay" due to both the gravitational field and the 
non-Euclidean geometry of  space. If  one tentatively assigns a value to ~,, e.g., 
7 = 1 as in general relativity, then knowing to and R one may calculate the 
term. Clearly, even the classical measures of to, R will be adequate for this 
purpose. As an example we set y = 1, to = 3Ro, where R| is the classical 
measure of the Sun's radius and take R = 1 AU classically. Following Allen 
(1973) we take 

c = 2.9979250(10) x 105 km s -1 
Ro = 6.9599 x l0 Skm 

1 AU = 1.495979(1) x 108 km (3.5) 
m = GM/c 2 = 1.476 km 

and obtain 

Newtonian time = 984.08024 s 
Gravitational time delay = 74.42 t~s or equivalently 22.310 km (3.6) 

The time delay is a significantly measurable quantity under our stated 
precision limit of 10 -2 tzs (we are ignoring here any imprecision arising from 
the tolerated departure of the probes from a stationary state). The Newtonian 
term would need to be evaluated to a greater accuracy than that shown. A 
precision approaching 10 -1 tzs would be possible if we can determine the 
coordinates to, R to 1 part in 10 l~ (Sections 4 and 6). 

4. DETERMINATION OF 15 AND COORDINATE VALUES r 
BY USE OF CIRCULAR ORBITS 

An ordinary geodesic path in the space-time of metric (2.1) will be 
assumed. Suppose the orbit of a probe P is in the plane ~ = 7r/2. The geodesic 
equations give 

r2 dO = h (4.1) 

1 2m 2flrn2] dt 
- -7-  + 7 ]  ~ = k (4.2) 

h and k being constants. The r equation of a geodesic is 

d m 
-;-~ ] \ dsJ + 7  -~ - r = 0  

(4.3) 
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while the metric integral gives 

( 2 ~ m 2 ] [ d t ] 2 (  2~rm)[dr]2 r2[dO] 2 1-2---m-mr + 7 ]  \ds] - 1 + \as]  - \ ~ ]  = 1 ( 4 . 4 )  

Consider the typical circular geodesic r = R. The above equations yield 
two relations connecting h and k for this case: 

m(1 - 2~m/R)k 2 h 2 
(1 - 2m/R + 2Bm2/R2) z = R (4.5) 

k 2 h 2 
- -  = 1 ( 4 . 6 )  1 - 2m/R + 2~m~/R 2 R 2 

Hence neglecting terms of order m2/R 2 we obtain 

h=ml12Rl~2[1 + (3 - / 3 ) R ]  (4.7) 

m ( 4 . 8 )  

We can now find the proper time for a complete circular orbit as registered 
by an atomic clock on the spacecraft P. It is 

= (2~ds R2f]" [s] .1o yod~ = ~ dO 

2~R"/2 [1 _ (~ _ fl) R] = - - ~  

In general units this is 

[s] = ~  1 - ( 3 - t 3 )  (4.9) 

On the other hand if a probe A was maintained fixed at a point of the same 
orbit then A's clock would register for P's circuit the time 

( [~] = ds 1 - ~ d s  

where ds refers to an element of P's world-line. Hence 

[i] = 1 - 1 - 2m/R[S] 

2zrRa/2 [1 - (1 m] 
_ -  _ 

In principle, from (4.9) and (4.10) we can derive both/3 and any value R 
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of  the radial coordinate (~, is absent from both equations). These determina- 
tions will be essentially in terms of  only one constant m or/~ (=  mc2). The 
nature of the experiment would probably require P to be "drag-free" as 
described in the Introduction, and its maintenance of a circular orbit would 
have to be carefully monitored from Earth. Because of the high precision of  
atomic clocks it should then be possible to obtain the coordinate r = R as it 
occurs in the metric (2.1) to an accuracy of 1 part in 10 l~ in terms of  m 
(,-~ 1.476 kin) as the unit of  length. Similarly we obtain fi to very high accuracy. 

It should be noticed that if we think of R as corresponding in particular 
to 1 AU then neglect of terms O(m~/R 2) here and elsewhere in the paper 
means discarding quantities O(10-16). The post-Newtonian terms O(m/R) 
affect the result for R by the order of  a kilometer, and the final result should 
be accurate to about 10 m (i.e., to 1 part in 101~ approximately) compared 
with the present uncertainty in the AU of about 10 km (Allen, 1973). 

5. DETERMINATION OF y BY A TIME DELAY TEST 
B E T W E E N  O R B I T I N G  S P A C E  P R O B E S  

Let two transponders A and P be placed in the same circular orbit about 
the Sun, of  coordinate radius r = R. We shall again think of  R as correspond- 
ing to 1 AU and the orbit as in the plane of the ecliptic. It will be convenient 
to have the spacecraft displaced in orbital phase by a little less than 6 months, 
a precisely known amount to the Earth observer whom we think of as 
monitoring the spacecraft from the Earth's position approximately midway 
between in orbital phase. Pulsed signals are sent from A to P so as to pass the 
Sun at a nearest coordinate distance r = p. The time of dispatch from A and 
the arrival at P is registered by their respective on-board atomic clocks. As a 
consistency check P would immediately retransmit received signals back to 
A. During the time of the two-way trip the spacecraft would move through 
only 1.4 arcm of their orbit. Hence for the theoretical calculation it will be 
sufficiently accurate to take the total time lapse as four times the half-way 
distance time between A and the point r = p. 

Attention is restricted to theories where the signals move on null 
geodesics of  the space-time (2.1), retaining terms up to O(m/r) only. For  the 
equations in the plane ~ = ~r/2 we then get 

r2 dO h' (5.1) 

(1 ---2m) -fadt-- k' (5.2) 

where h', k' are constants and a is an affine parameter along the null geodesic. 
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W e  also have the integral from the metric 

(1-2~mr )[dt~2- (1 
leading to 

9. _ rz[dO~ z 
\a~!  = 0 (5.3) 

(dr]  2 1 - 2m/r - (h'2/k'2)(1 - 2m/r)2r -2 
(5.4) 

dt ] 1 + 2},m/r 

= 0 ,  r =  p 

Hence by elimination of h'2/k '2 we obtain to order O(m/r) 

dr (r2 - p2)1/2 [ m (  r--~p)]  
3 7 =  r 1 - r  1 

and so calculate to the required order 

, = r  r m p 
[t]r=o = (r 2-'p2)112 1 + r 1 + 7 +  dr 

= ( R  2 _  p2)ltz + m  (1 + 7 )  cosh -1 + \ f f - ~ p ]  ] (5.5) 

This coordinate interval is related to the required atomic time as registered 
on A's clock by 

[ s ] = [ t ]  37 . 

and by the result of Section 4 for a probe moving on a circular orbit we have 

dt k m 
-~ = 1 - 2 m / R ~  1 + { - ~  

by (4.8). Therefore in general units we find for the two-way trip 

[s] = ! ( (R2 - p2) 1'2 

R -- p 112 
+m[(1  + , ) c o s h  -1 (R) + (~__~p) _ 23(R 2 Rp2)l/z]} (5.6) 

The first term in (5.6) represents the "Newtonian time" as if the 
coordinates p, R were Euclidean and the trajectory a straight line. The 
remaining terms constitute the "gravitational time delay." This result contains 
extra terms compared with the formula used in Shapiro et al. (1968, 1971) for 
their passive radar between the Earth and Mercury. This is because of the 
very much higher accuracy which can be expected using active radar by 
spacecraft, as discussed in Section 1. The first term of the delay time is the 
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dominant one but the others are of  order m/e ~ 5 tLs, which is easily 
measurable by the technique. If  we set p = 3Ro, R = 1 AU we calculate from 
classical measurements the round-trip values: 

Newtonian time = 1995.82481 s (5.7) 

and (for the case ~/= 1) 

gravitational time delay = 185.44 ~s (5.8) 

Determination of p, R to high precision on the lines discussed in Sections 4 
and 6 would give the Newtonian time to the high accuracy required for a 
precise evaluation of 7. 

6. DETERMINATION OF ~,y AND EVALUATION OF THE 
RADIAL COORDINATE r - - R  BY MEANS OF A PROBE 

FREELY FALLING TOWARDS TH E SUN 

Suppose a probe P is moving in a radial path in free fall towards the Sun. 
Because of the nongravitational forces of solar radiation and solar wind it may 
be necessary to make the probe "drag-free." By keeping a base spacecraft A 
at rest at r = R on the same radius vector P's motion can be monitored by 
signals sent from A and retransmitted from P back to A. 

It will be assumed that the free fall is that of an ordinary geodesic in the 
field of metric (2.1). The geodesic equation in t yields 

dt k 
~s = 1 - 2m/r + 23m2/r 2 (6.1) 

The constant k may be interpreted in terms of the constant of  motion of the 
probe. Suppose the square of the speed "at  infinity" is V 2 (which will be 
positive or negative according as the motion is hyperbolic or elliptic). Then 

1 
k---g = 1 - V 2 (6.2) 

The integral provided by the metric itself is 

= 1 - - - r  + r - - - T - -  1 + \ d t ]  (6.3) 

Hence, neglecting terms O(m2/r 2) and restoring general units to clarify the 
order of  the terms, we find from (6.1) and (6.3) 

dt] + - -  1 - (~, + 2)  m r -~- - r (/3 + 27 + 2) (6.4) 

Now we can define operationally the coordinates ~, ? by (of. Section 3) 
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- - W  - =  - ~ +  R~ ! @ (6.5) 

Retention now of terms up to O(m/r) means we can use the results (3.1), (3.2) 
on replacing p by r, so that 

d ~ _  dr [1 + (y + 1)mJ (6.7) 
dt dt 

Hence by (6.4), (6.7) to the same order we have 

() ( .  df 2 V 2 2/~ 1 c2 (6.8) 
= + r 

where by (6.5) and (3.3) r is given in terms of ~ by 

~=R-r+m[( l+y) log  R R  ] r ~ r (6.9) 

Hence to a consistent order we find that 

= 

d~! + R----~ 

(6.10) 

an entirely operational equation with parameters R, 9', and 8- This result was 
obtained for the special case of  general relativity in an earlier paper (Davidson, 
1967). 

It is interesting to compare (6.10) with the corresponding Newtonian 
operational equation, based on Newtonian gravitation, classical kinematics, 
and a finite velocity of  light c: 

(E]~=  v~ (6.11) 2t~ 
dU + R-----~ 

In principle, sufficient data in the form of number pairs (?, d~/df) would 
identify the required parameters. A particularly interesting case arises when 
a small probe P is launched with hyperbolic velocity, in the range V 2 ~> 
102(/z/R). Then (6.10) can be written to good approximation 

d~! + ~ 1 - 7 (6.12) 
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and the derived acceleration equation in operational coordinates is 

( v2) d2f /~ 1 - (6.13) 
d t  - - z  = ( R  - e )  ~ 

Either equation, independent of  fl and 7, could be tested to high accuracy by 
accumulation of  data pairs (?, df/dO, assuming R was known to the requisite 
precision. For  these equations, if R was of  order 1 AU, only moderate 
precision would be necessary--about 1 part in 10 7. Then (6.12) could be used 
to obtain R to much higher precision assuming its validity, independent of  13 
and 7, for strongly hyperbolic motions. 

7. CONCLUDING REMARKS 

The tests discussed in this paper have been put forward as specimen tests 
of gravitational theory of the type that might be deployed to utilize the far 
greater precision in time-distance measurements now available in the solar 
system. This involves radio pulse signaling between probes carrying atomic 
clocks. Because of the great labor involved in working out the theoretical 
consequences of general relativity theory, and because of its many contro- 
versial features such as black holes currently being discussed, and not least 
because of its near indispensability in tackling the cosmological problem, it 
is of paramount importance to push the verification of  the theory in all 
observational aspects to the highest possible precision. 
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